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CHAPTER 1

INTRODUCTION

In recent years, the gyrotron oscillators!"3 have been intensively
developed and successfully used, for example, for plasma heating experiments.4
There are many other applications of gyrotrons as high-power microwave and
, millimeter wave devices. Since amplifiers are in more demand than oscillators
K for applications to communications, accelerators, and radars, there are
i various develogment programs for gyrotron amplifiers such as gyro-klystrons5
and gyro-TWTs.~ We observe that virturally all the oscillators in the past
have had potential as amplifiers. The electron beam in gyrotrons is hollow,
and the individual electron orbit is off-centered, i.e., in a slow-rotational
equilibrium about the system axis. Gyrotrons are, therefore, operated by the
electron cyclotron maser instability mainly with the axisymmetric modes of a
cirular circuit, e.g., the TE, -modes. In other words, the gyrotron is
basically a overmoded device, which may not be convenient for use as an
amplifier due to mode competition. On the other hand, the dominant mode in a
circular waveguide is the TE;;-mode whose electric field intemsity is peaked
on the axis. An axis-rotating beam is, therefore,_the most efficient
configuration for the excitation of the TE;;-mode.

- e e,

o T

- -

i The relativistic axis-rotating electron beams have been produged

" primarily for plasma confinement® and collective ion acceleration.’ In these
devices, powerful microwave radiation was observed, and thfoiTEeraction

3 mechanism was identified as the negative mass instability.™"" The spectrum

g analysis indicated that the radiation contained many harmonic frequencies

simultaneously, i.e., mode competition. Control of this mode competition was

B ' reported by employing a multivane circuit, which could provide a preferential

o azimuthal harmonic numbis of the radiation fields in the circuit corresponding

to the number of vanes. The first attempt to develop a practical microwave

K deviciausing a non-relativistic electron beam was the cusptron microwave
° tube.

One of the simple ways of producing axis-rotating beams is the use of an
axial cusp magnetic field, into which a hollow beam is injected. After the
cusp transition, the hollow beam becomes an axis-rotating electron beam (E
layer), which propagates downstream. An axis-rotating beam is bunched
azimuthally by the negative mass instability, and the beam energy is thereby
transferred into the wave energy. This azimuthal beam bunching may be
compared to the phase bunching in gyrotrons which maintains the annular beam
shape in real space. Therefore, the harmonic frequency intesaifigg exists
- inherently in the cusptron. Many theoretical investigations’'"*'"¢ were
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conducted on the TE,,-mode interaction with an axis-rotating beam at the
fundamental cyclotron frequency. However, there was no experimental
investigation of_ this interaction due mainly to the fact that most of the
previous devicess' were not properly designed for the TE,; interaction. In
this paper, we report a useful interaction of an axis-rotating beam with
asymmetric radiation fields, namely the TEl -mode, at the fundamental electron
cyclotron frequency. It is free from mode competition and potentially
important for amplifier applicatiomns.
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CHAPTER 2

NEGATIVE MASS INSTABILITY

The negative mass stability properties for the TE waveguide modes have
been investigated in Reference 15 for the choice of the electron distribution
function in which all electrons have the same energy and the same canonical
angular momentum, but a Lorentzian distribution in the axial canonical
momentum. In the limit of a smooth conducting wall (R + R in Reference 195),
the dispersion relation is considerab}y ilmplkfled Eor a €enuous beam, the
vacuum TE-mode dispersion relation, w /¢= - -a /R is a good approximation
for the TEll-mode where a is the first root of J! (a)c- 0, and R, is the
vaveguide radius. Taylor expanding the dispersioni relation in Eq. (28) in
Reference 15 about the vacuum TE mode dispersion relation, we obtain

w2 2 a2 ;é 2
(—E-k-—2)(w-uc-kﬂzc+i|k|ﬂzc3)
¢ . Rc .’2
y rRZ? K2c? [Ji(aRo/Rc)]z
=43 ) (1)
2 2 . 2
Y ¢ v, Jl(a) Jl(a) Rc

where v is the Budker'’'s parameter, Ro is the beam radius, w_is the electron
cyclotron frequency, ymc~ is the total electron beam energy, and A is the half
width of the axial momentum spread. From Eq. (1), the lowest order
eigenfrequency w and axial wavenumber k are obtained from the simultaneous
solution of the vacuum TE mode dispersion relation and ip cyclotron resonance
condition. However, defining x = (v - w_ - kB8_c) (y/v) /w_, we can
approximate Eq. (1) by ¢ z ¢

2,2

193 R a/R ) 17R
x’ =2 ( y ——o——=_o (2)

1+ ﬂz{ Jl(a) Jl(a) Rc

for A= 0. InEq. (2), ¢ = kc/w . The dispersion relation of the third order
polynomial for x in Eq. (2) clearly exhibits a strong instability.




NSWC TR 87-268

CHAPTER 3

EXPERIMENT

" The experimental set up is shown schematically in Figure 1. The magnetis
cusp field is produced by three independently controlled power supplies to the
coils. The cusp transition width is narrowed substantially by an iron plate
placed between the coils, €2 and C3. The transition length has been measured
as 4.8 mm, which is determined by the Full-Width-Half-Maximum (FWHM) of the
radial magnetic field at the opening of the iron plate. The system vacuum is
maintained by ion pumps at 1.0 x 10" Torr.

A hollow electron beam is produced from an annular thermionic cathode of
1.5 cm radius and 0.2 cm radial thickness with a Pierce-type focusing
electrode. An anode with an annular slit supported by three bridges is
attached to the iron plate. The annular slit of 0.2 cm width allows the
hollow beam to pass through the magnetic cusp transition region, where the (v,
x B.) force converts the beam axial velocity into the azimuthal velocity in
the downstream of the cusp transition.

The downstream cavity is electrically isolated by a 20 cm long ceramic
insulator, so that the total beam current delivered to the cavity can be
monitored by a pickup loop to the ground lead. The cavity is formed by a
stainless steel tube of 7.41 cm radius and 43.5 cm length with a blank flange
at the other end. Two RF couplers are installed on the end plate; one at the
center and the other at 2.0 cm from the axis. The resonant frequencies of the
cavity are exactly measured using these couplers, a calibrated CW sweep
oscillator, and a spectrum analyzer. The in situ measurements show 1.243 and
1.363 GHz for the TE;;; and TE;;,-modes, respectively. Therefore, the
required magnetic fields are approximately 465 and 520 G, respectively, for
the fundamental cyclotron interaction by a 30 keV beam without the Doppler
shift effect.

The electron gun (diode) is operated by a high-voltage modulator up to 30
kV normally with a perveance of 0.6 uperv. The pulse repetition rate is set
at 60 Hz to eliminate the neutralization effect of the background ions and to
observe multiple oscilloscope traces constantly. The magnetic field produced
by the series connected coils, C2 and C3, mainly controls the cusp transition
characteristics of the electron beam. While the magnetic field from the
downstream coils controls the resonance condition for the interaction, the
first coil, C1, controls the beam launching angle and thereby the interaction
intensity. The details of the electron motion in a cusp transition may be
found in Reference 16.
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A block diagram of the radiation diagnostics is shown in Figure 2. A
microwave reflectometer dual directional coupler) is used to divide the
signal into a crystal detector, a power meter, and a spectrum analyzer. While
the microwave frequency is precisely detected by the spectrum analyzer, the
microvave power is carefully determined by calibration of these three
instruments. In the calibration, every instrument is fixed including the
cables and the control knobs of the instruments. The cable from the RF
coupler is disconnected from the cavity and reconnected to a calibrated power
source at the observed frequency without the attenuators before the crystal
detector. The power measurements from chese instruments are consistent to
within +10 percent.

The TEy)y; and TE;,,-modes are separately excited by adjusting magnetic
field configurations, and thereby the beam characteristics. The observed
frequencies are upshifted by 20-25 MHz from the resonance frequencies obtained
from the cold tests. This compares well with the theoretical value of 20 MHz,
which is obtained from Eq. (2) for R, = 1.0 cmand B8_ = 0.06. Typical
experimental results for TE,;,-mode generation are shown in Figures 3 and 4.
The top trace in Figure 3 shows the crystal detector signal of 140 mV, which
corresponds to the 65 dB-attenuated microwave power of 1.8 kW. The middle
trace is the total beam current of 0.8 A delivered to the cavity, and the
bottom trace shows the beam energy of 29 keV. In this case, the electronic
efficiency is approximately 7.8 percent. The spectrum analyzer trace is shown
in Figure 4, where the microwave frequency is 1.384 GHz with less than 1 MHz
width at the 3 dB level. The TE;;)-mode at 1.266 GHz shows similar behavior
with a slightly lower efficiency. It is important to note that we have never
observed any mode competition in this experiment.
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CHAPTER &

CONCLUSION
In conclusion, the TE and TE{j,-modes of a circular cavity are excited
separately at the fundamentai electron cyclotron frequency by an axis-rotating

electron beam of 28-30 keV, 0.8-1.0 A, and 4 us via the negative mass
instability. Radiation power is about 1.8 kW with an approximately 7.8
percent efficiency at 1.266 and 1.384 GHz, respectively. The applied magnetic
field in the cavity is in the range of 465-520 G. This experiment has
successfully demonstrated that a non-relativistic axis-rotating beam can be
used to generate the dominant mode effectively without mode competition. This
device holds promise as an efficient oscillator and/or amplifier useful for
many important applications.
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